×
Samples Blogs Make Payment About Us Reviews 4.9/5 Order Now

Implement Nodes and Lists in C Language Assignment Solution

July 09, 2024
Dr. Brian Thompson
Dr. Brian
🇨🇦 Canada
C
Dr. Brian Thompson is a seasoned professional with a PhD in Computer Science from McGill University in Montreal, Canada. With 7 years of experience, he has completed over 700 C programming assignments with precision and accuracy. Dr. Thompson's specialization in software engineering and cybersecurity ensures that his solutions are not only efficient but also robust and secure.
Key Topics
  • Instructions
    • Objective
  • Requirements and Specifications
Tip of the day
Familiarize yourself with OCaml's pattern matching; it simplifies handling recursive data structures like lists and trees, making your code concise and easier to debug.
News
In 2024, Girls Who Code introduced a Data Science + AI track in their free summer programs for high school students, fostering skills in cybersecurity and creative coding​

Instructions

Objective

Write a C assignment program to implement nodes and lists.

Requirements and Specifications

Program-to-implement-nodes-and-lists-in-C-language
Program-to-implement-nodes-and-lists-in-C-language 1
Program-to-implement-nodes-and-lists-in-C-language 2
Program-to-implement-nodes-and-lists-in-C-language 3

Source Code

package tests; public class ListUtilities { public Node getAllPrefixes(Node node, int minLength, int maxLength) { // result list head and cursor nodes Node result = null; Node resultCurrNode = null; // string for building prefixes String current = "["; // source list cursor node Node currNode = node; // processed nodes counter int count = 0; // processing all nodes in the list while(currNode != null) { if (current.length() == 1) { // if current string is empty, adding only int current += currNode.getElement().toString(); } else { // otherwise adding comma and int current += ", " + currNode.getElement().toString(); } // increasing counter count++; // if counter is between bounds, adding it to result list if (count >= minLength && count <= maxLength) { if (result == null) { // result list is empty now, we have to intitialize head node and cursor result = new Node<>(current + "]", null); resultCurrNode = result; } else { // adding new node to the end and moving cursor forward resultCurrNode.setNext(new Node<>(current + "]", null)); resultCurrNode = resultCurrNode.getNext(); } } // moving forward through source list currNode = currNode.getNext(); } // returning result list return result; } public Node getMergedChain(Node nodeA, Node nodeB) { // result list head and cursor nodes Node result = null; Node resultCurrNode = null; // cursor node for list A Node currNodeA = nodeA; // cursor node for list B Node currNodeB = nodeB; // keep iterating until all nodes from both strings are processed while (currNodeA != null || currNodeB != null) { // this variable will store element which needed to be added to the result list on current step int toAdd; if (currNodeA != null && currNodeB != null) { // if list A and list B both not processed yet, // we must choose the least element among two cursor elements int valA = currNodeA.getElement(); int valB = currNodeB.getElement(); // selecting min element if (valA < valB) { toAdd = valA; // value from A will be added to the result, shifting A cursor currNodeA = currNodeA.getNext(); } else { toAdd = valB; // value from B will be added to the result, shifting A cursor currNodeB = currNodeB.getNext(); } } else if (currNodeB == null) { // only A list is not processed toAdd = currNodeA.getElement(); // value from A will be added to the result, shifting A cursor currNodeA = currNodeA.getNext(); } else { // only B list is not processed toAdd = currNodeB.getElement(); // value from B will be added to the result, shifting B cursor currNodeB = currNodeB.getNext(); } if (result == null) { // result list is empty now, we have to intitialize head node and cursor result = new Node<>(toAdd, null); resultCurrNode = result; } else { // adding new node to the end and moving cursor forward resultCurrNode.setNext(new Node<>(toAdd, null)); resultCurrNode = resultCurrNode.getNext(); } } // returning result list return result; } public Node getInterleavedArithmeticFibonacciSequences(int arithStart, int arithDif, int arithSize, int fibSize) { // arithmetic list head and cursor nodes Node arithmetic = null; Node arithmeticCurrNode = null; for (int i = 0; i if (arithmetic == null) { // if arithmetic list is empty, only intializing nodes and inserting start value arithmetic = new Node<>(arithStart, null); arithmeticCurrNode = arithmetic; } else { // inserting appropriate value to the end of the list arithmeticCurrNode.setNext(new Node<>(arithStart + i * arithDif, null)); arithmeticCurrNode = arithmeticCurrNode.getNext(); } } // fibbonacci list head and cursor nodes Node fib = null; Node fibCurrNode = null; // fib_0 int prevPrev = 1; // fib_! int prev = 1; // inserting required number of fibbonacci sequence for (int i = 0; i if (i == 0) { // inserting fib_0 into fib list fib = new Node<>(prevPrev, null); fibCurrNode = fib; } else if (i == 1) { // inserting fib_1 into fib list fibCurrNode.setNext(new Node<>(prev, null)); fibCurrNode = fibCurrNode.getNext(); } else { // calculating current fib value int curr = prevPrev + prev; // inserting it to the list fibCurrNode.setNext(new Node<>(curr, null)); fibCurrNode = fibCurrNode.getNext(); // reassigning previous fib values prevPrev = prev; prev = curr; } } // now we will merge obtained two lists into the result list, by interleaving arithmeticCurrNode = arithmetic; fibCurrNode = fib; // result list head and cursor nodes Node result = null; Node resultCurrNode = null; // for interleaving, we need a flag, which shows, from which list was previous entry boolean prevFib = true; while(arithmeticCurrNode != null || fibCurrNode != null) { // variable for value to add int toAdd; if (arithmeticCurrNode != null && fibCurrNode != null) { // both lists are not processed yet if (prevFib) { // previous node was from fib list // inserting value from arithmetic list toAdd = arithmeticCurrNode.getElement(); arithmeticCurrNode = arithmeticCurrNode.getNext(); prevFib = false; } else { // previous node was from arithmetic list // inserting value from fib list toAdd = fibCurrNode.getElement(); fibCurrNode = fibCurrNode.getNext(); prevFib = true; } } else if (fibCurrNode == null) { // fib list is processed // inserting value from arithmetic list toAdd = arithmeticCurrNode.getElement(); arithmeticCurrNode = arithmeticCurrNode.getNext(); } else { // arithmetic list is processed // inserting value from fib list toAdd = fibCurrNode.getElement(); fibCurrNode = fibCurrNode.getNext(); } if (result == null) { // if arithmetic list is empty, only intializing nodes and inserting start value result = new Node<>(toAdd, null); resultCurrNode = result; } else { // adding new node to the end and moving cursor forward resultCurrNode.setNext(new Node<>(toAdd, null)); resultCurrNode = resultCurrNode.getNext(); } } // returning result list return result; } public Node getGroupedStrings(Node node, int m, int n) { // group 1 list head and cursor nodes Node group1 = null; Node group1CurrNode = null; // group 2 list head and cursor nodes Node group2 = null; Node group2CurrNode = null; // group 3 list head and cursor nodes Node group3 = null; Node group3CurrNode = null; // iterating through source list and inserting each value to one of three lists // value order inside group will be preserved Node currNode = node; while(currNode != null) { String val = currNode.getElement(); if (val.length() < m) { if (group1 == null) { group1 = new Node<>(val, null); group1CurrNode = group1; } else { group1CurrNode.setNext(new Node<>(val, null)); group1CurrNode = group1CurrNode.getNext(); } } else if (val.length() < n) { if (group2 == null) { group2 = new Node<>(val, null); group2CurrNode = group2; } else { group2CurrNode.setNext(new Node<>(val, null)); group2CurrNode = group2CurrNode.getNext(); } } else { if (group3 == null) { group3 = new Node<>(val, null); group3CurrNode = group3; } else { group3CurrNode.setNext(new Node<>(val, null)); group3CurrNode = group3CurrNode.getNext(); } } currNode = currNode.getNext(); } // now we just need to concatenate 3 obtained list // doing it by correctly checking nulls Node result = group1; Node last = group1CurrNode; if (last == null) { result = group2; } else { last.setNext(group2); } if (group2 != null) { last = group2CurrNode; } if (last == null) { result = group3; } else { last.setNext(group3); } return result; } } NODE package tests; /* * This Node class is provided to you, * and you must use it to implement the required class(es) and method(s) in the model package. * The StarterTests class in the `tests` package suggests what you need to create in the `model` package. * Where the Node class is needed, you must: * + Only use the public methods given here. * + Not add any additional attributes or methods in this Node class. */ public class Node { /* * Do not modify this class. * When your submission is graded, the same starter version of the Node class will be used, * meaning that if you made any changes to this class, they would be wiped out * and your submitted classes may just stop compiling. */ private E element; private Node next; /* * Constructor */ public Node(E e, Node n) { element = e; next = n; } /* * Accessors */ public E getElement() { return element; } public Node getNext() { return next; } /* * Mutators */ public void setElement(E e) { element = e; } public void setNext(Node n) { next = n; } }

Similar Samples

Explore our sample programming assignments to see how we can assist you in tackling complex coding tasks. Our curated samples showcase the depth of expertise and quality solutions we offer across various programming languages and topics. Whether you need help with Python, Java, or any other language, our examples demonstrate our commitment to delivering excellence in programming homework help.