×
Reviews 4.9/5 Order Now

Matrix Operations on Square Matrices In MIPS Assembly on MARS Simulator Assembly Language Assignment Solution

July 09, 2024
Rehana Magnus
Rehana Magnus
🇨🇦 Canada
Assembly Language
Rehana Magnus, PhD in Computer Science from the esteemed Acadia Institute of Technology, Canada. With 6 years of experience, specializes in assembly language programming. Proficient in low-level coding, optimizing performance, and enhancing system functionality.
Key Topics
  • Instructions
  • Requirements and Specifications
Tip of the day
When working on NetLogo assignments, Test each part individually to identify errors early. Use NetLogo’s built-in documentation for guidance on commands.
News
In 2024, new programming libraries like PyWebTools and AIxGen were released, offering advanced web development and AI model generation features.

Instructions

Objective

Write a MIPS assembly assignment program to perform Matrix operations on square matrices in MIPS assembly on MARS simulator Assembly language.

Requirements and Specifications

In this assignment you will write code to multiply two square n × n matrices of single precision floating point numbers, and then optimize the code to exploit a memory cache. All the functions you write in this assignment must respect register conventions and work for different sizes of square matrices. Your code must also include useful comments to make it readable.

You will need to use two MARS tools in this assignment:

  • Data Cache Simulator: This tool allows you to set different cache sizes and types, and measures the number of memory accesses, and cache misses.
  • Instruction Counter: This tool counts the number of true MIPS assembly instructions that execute during your program.

Each tool needs to be connected to MARS, and you will want to use a combination of breakpoints and the reset button on each tool to make careful measurements of your code performance.

You will also likely want to try the Memory Reference Visualization tool (much like the Bitmap Display), as it lets you watch the memory reference patterns generated by your program. Likewise, the bitmap display tool will also be useful for visualizing the results. Remember to set the base address to the heap (0x10040000), and choose the unit and display width to match the matrix size (N = display width pided by unit width). Running some tools, may noticeably slow down the execution of your program. If ever you notice MARS running much too slow, try restarting.

Screenshots of output

Matrix operations on square matrices in MIPS assembly on MARS simulator Assembly language

Source Code

# TODO: PUT YOUR NAME AND STUDENT NUMBER HERE!!! # TODO: ADD OTHER COMMENTS YOU HAVE HERE AT THE TOP OF THIS FILE # TODO: SEE LABELS FOR PROCEDURES YOU MUST IMPLEMENT AT THE BOTTOM OF THIS FILE .data TestNumber: .word 2 # TODO: Which test to run! # 0 compare matrices stored in files Afname and Bfname # 1 test Proc using files A through D named below # 2 compare MADD1 and MADD2 with random matrices of size Size Proc: MADD1 # Procedure used by test 2, set to MADD1 or MADD2 Size: .word 64 # matrix size (MUST match size of matrix loaded for test 0 and 1) Afname: .asciiz "A64.bin" Bfname: .asciiz "B64.bin" Cfname: .asciiz "C64.bin" Dfname: .asciiz "D64.bin" ################################################################# # Main function for testing assignment objectives. # Modify this function as needed to complete your assignment. # Note that the TA will ultimately use a different testing program. .text main: la $t0 TestNumber lw $t0 ($t0) beq $t0 0 compareMatrix beq $t0 1 testFromFile beq $t0 2 compareMADD li $v0 10 # exit if the test number is out of range syscall compareMatrix: la $s7 Size lw $s7 ($s7) # Let $s7 be the matrix size n move $a0 $s7 jal mallocMatrix # all3E-4cate heap memory and load matrix A move $s0 $v0 # $s0 is a pointer to matrix A la $a0 Afname move $a1 $s7 move $a2 $s7 move $a3 $s0 jal loadMatrix move $a0 $s7 jal mallocMatrix # allocate heap memory and load matrix B move $s1 $v0 # $s1 is a pointer to matrix B la $a0 Bfname move $a1 $s7 move $a2 $s7 move $a3 $s1 jal loadMatrix move $a0 $s0 move $a1 $s1 move $a2 $s7 jal check li $v0 10 # load exit call code 10 into $v0 syscall # call operating system to exit testFromFile: la $s7 Size lw $s7 ($s7) # Let $s7 be the matrix size n move $a0 $s7 jal mallocMatrix # allocate heap memory and load matrix A move $s0 $v0 # $s0 is a pointer to matrix A la $a0 Afname move $a1 $s7 move $a2 $s7 move $a3 $s0 jal loadMatrix move $a0 $s7 jal mallocMatrix # allocate heap memory and load matrix B move $s1 $v0 # $s1 is a pointer to matrix B la $a0 Bfname move $a1 $s7 move $a2 $s7 move $a3 $s1 jal loadMatrix move $a0 $s7 jal mallocMatrix # allocate heap memory and load matrix C move $s2 $v0 # $s2 is a pointer to matrix C la $a0 Cfname move $a1 $s7 move $a2 $s7 move $a3 $s2 jal loadMatrix move $a0 $s7 jal mallocMatrix # allocate heap memory and load matrix A move $s3 $v0 # $s3 is a pointer to matrix D la $a0 Dfname move $a1 $s7 move $a2 $s7 move $a3 $s3 jal loadMatrix # D is the answer, i.e., D = AB+C # TODO: add your testing code here move $a0, $s0 # A move $a1, $s1 # B move $a2, $s2 # C move $a3, $s7 # n la $ra ReturnHere la $t0 Proc # function pointer lw $t0 ($t0) jr $t0 # like a jal to MADD1 or MADD2 depending on Proc definition ReturnHere: move $a0 $s2 # C move $a1 $s3 # D move $a2 $s7 # n jal check # check the answer li $v0, 10 # load exit call code 10 into $v0 syscall # call operating system to exit compareMADD: la $s7 Size lw $s7 ($s7) # n is loaded from Size mul $s4 $s7 $s7 # n^2 sll $s5 $s4 2 # n^2 * 4 move $a0 $s5 li $v0 9 # malloc A syscall move $s0 $v0 move $a0 $s5 # malloc B li $v0 9 syscall move $s1 $v0 move $a0 $s5 # malloc C1 li $v0 9 syscall move $s2 $v0 move $a0 $s5 # malloc C2 li $v0 9 syscall move $s3 $v0 move $a0 $s0 # A move $a1 $s4 # n^2 jal fillRandom # fill A with random floats move $a0 $s1 # B move $a1 $s4 # n^2 jal fillRandom # fill A with random floats move $a0 $s2 # C1 move $a1 $s4 # n^2 jal fillZero # fill A with random floats move $a0 $s3 # C2 move $a1 $s4 # n^2 jal fillZero # fill A with random floats move $a0 $s0 # A move $a1 $s1 # B move $a2 $s2 # C1 # note that we assume C1 to contain zeros ! move $a3 $s7 # n jal MADD1 move $a0 $s0 # A move $a1 $s1 # B move $a2 $s3 # C2 # note that we assume C2 to contain zeros ! move $a3 $s7 # n jal MADD2 move $a0 $s2 # C1 move $a1 $s3 # C2 move $a2 $s7 # n jal check # check that they match li $v0 10 # load exit call code 10 into $v0 syscall # call operating system to exit ############################################################### # mallocMatrix( int N ) # Allocates memory for an N by N matrix of floats # The pointer to the memory is returned in $v0 mallocMatrix: mul $a0, $a0, $a0 # Let $s5 be n squared sll $a0, $a0, 2 # Let $s4 be 4 n^2 bytes li $v0, 9 syscall # malloc A jr $ra ############################################################### # loadMatrix( char* filename, int width, int height, float* buffer ) .data errorMessage: .asciiz "FILE NOT FOUND" .text loadMatrix: mul $t0 $a1 $a2 # words to read (width x height) in a2 sll $t0 $t0 2 # multiply by 4 to get bytes to read li $a1 0 # flags (0: read, 1: write) li $a2 0 # mode (unused) li $v0 13 # open file, $a0 is null-terminated string of file name syscall slti $t1 $v0 0 beq $t1 $0 fileFound la $a0 errorMessage li $v0 4 syscall # print error message li $v0 10 # and then exit syscall fileFound: move $a0 $v0 # file descriptor (negative if error) as argument for read move $a1 $a3 # address of buffer in which to write move $a2 $t0 # number of bytes to read li $v0 14 # system call for read from file syscall # read from file # $v0 contains number of characters read (0 if end-of-file, negative if error). # We'll assume that we do not need to be checking for errors! # Note, the bitmap display doesn't update properly on load, # so let's go touch each memory address to refresh it! move $t0 $a3 # start address add $t1 $a3 $a2 # end address loadloop: lw $t2 ($t0) sw $t2 ($t0) addi $t0 $t0 4 bne $t0 $t1 loadloop li $v0 16 # close file ($a0 should still be the file descriptor) syscall jr $ra ########################################################## # Fills the matrix $a0, which has $a1 entries, with random numbers fillRandom: li $v0 43 syscall # random float, and assume $a0 unmodified!! swc1 $f0 0($a0) addi $a0 $a0 4 addi $a1 $a1 -1 bne $a1 $zero fillRandom jr $ra ########################################################## # Fills the matrix $a0 , which has $a1 entries, with zero fillZero: sw $zero 0($a0) # $zero is zero single precision float addi $a0 $a0 4 addi $a1 $a1 -1 bne $a1 $zero fillZero jr $ra ###################################################### # TODO: void subtract( float* A, float* B, float* C, int N ) C = A - B subtract: mul $t0, $a3, $a3 # multiply N*N subLoop: l.s $f0, 0($a0) # load value from A l.s $f1, 0($a1) # load value from B sub.s $f0, $f0, $f1 # subtract A - B values s.s $f0, 0($a2) # save result in C addi $a0, $a0, 4 # advance A pointer addi $a1, $a1, 4 # advance B pointer addi $a2, $a2, 4 # advance C pointer addi $t0, $t0, -1 # decrement number of entries to subtract bnez $t0, subLoop # repeat while not zero jr $ra ################################################# # TODO: float frobeneousNorm( float* A, int N ) frobeneousNorm: mul $t0, $a1, $a1 # multiply N*N mtc1 $zero, $f0 # initialize sum to zero frobLoop: l.s $f1, 0($a0) # load value from A mul.s $f1, $f1, $f1 # calculate square add.s $f0, $f0, $f1 # add square to sum addi $a0, $a0, 4 # advance A pointer addi $t0, $t0, -1 # decrement number of entries to add bnez $t0, frobLoop # repeat while not zero sqrt.s $f0, $f0 # take square root and return it jr $ra ################################################# # TODO: void check ( float* C, float* D, int N ) # Print the forbeneous norm of the difference of C and D check: addi $sp, $sp, -12 sw $ra, 0($sp) # save ra in stack sw $s0, 4($sp) # save s0 in stack sw $s1, 8($sp) # save s1 in stack move $s0, $a0 # save C pointer move $a3, $a2 # pass N move $a2, $a0 # save C-D result in C jal subtract move $a0, $s0 # pass C which holds the subtraction move $a1, $a3 # pass N jal frobeneousNorm # calculate frobeneous norm mov.s $f12, $f0 # copy result to f12 for syscall li $v0, 2 # use syscall 2 to print float syscall # print float lw $ra, 0($sp) # restore ra from stack lw $s0, 4($sp) # restore s0 from stack lw $s1, 8($sp) # restore s1 from stack addi $sp, $sp, 12 jr $ra ############################################################## # TODO: void MADD1( float*A, float* B, float* C, N ) MADD1: sll $t5, $a3, 2 # calculate row size = N*4 move $t6, $a1 # save b pointer move $t0, $a3 # copy N to t0 (i) fori: # for( i = 0; i < n; i++ ) { move $a1, $t6 # restore b pointer move $t1, $a3 # copy N to t1, (j) forj: # for( j = 0; j < n; j++ ) { move $t2, $a3 # copy M to t3, (k) move $t3, $a0 # copy current a[i] in t3 move $t4, $a1 # get &b[0][j] mtc1 $zero, $f0 # sum = 0.0; fork: # for( k = 0; k < n; k++ ) { # c[i][j] += a[i][k] * b[k][j]; l.s $f1, 0($t3) # load A[i][k] l.s $f2, 0($t4) # load b[k][j] mul.s $f1, $f1, $f2 # multiply a[i][k] * b[k][j] add.s $f0, $f0, $f1 # add result to sum addi $t3, $t3, 4 # advance A[i][k] add $t4, $t4, $t5 # advance B[k][j] addi $t2, $t2, -1 # decrement k bnez $t2, fork # repeat while not zero l.s $f1, 0($a2) # load C[i][j] add.s $f1, $f1, $f0 # add result to C[i][j] s.s $f1, 0($a2) # save result in C[i][j] addi $a2, $a2, 4 # advance to next position in C addi $a1, $a1, 4 # avance to b[0][j] addi $t1, $t1, -1 # decrement j bnez $t1, forj # repeat while not zero move $a0, $t3 # advance A[i] to A[i+1] addi $t0, $t0, -1 # decrement i bnez $t0, fori # repeat while not zero jr $ra ######################################################### # TODO: void MADD2( float*A, float* B, float* C, N ) MADD2: addi $sp, $sp, -8 # save used registers sw $s0, 0($sp) sw $s1, 4($sp) sll $t8, $a3, 2 # calculate row size = N*4 li $t0, 0 # jj = 0 forjj: # for( jj = 0; jj < n; jj += bsize ) { li $t1, 0 # kk = 0 forkk: # for( kk = 0; kk < n; kk += bsize ) li $t2, 0 # i = 0 fori1: # for( i = 0; i < n; i++ ) { mul $s0, $a3, $t2 # i*n add $s0, $s0, $t1 # i*n + kk sll $s0, $s0, 2 # 4*(i*n + kk) add $s0, $s0, $a0 # &a[i][kk] move $t3, $t0 # j = jj li $t6, 4 # bsize forj1: # for( j = jj; j < min( jj + bsize, n ); j++ ) { mtc1 $zero, $f0 # sum = 0.0; move $t5, $s0 # save a[i][k] mul $s1, $a3, $t1 # kk*n add $s1, $s1, $t3 # kk*n + j sll $s1, $s1, 2 # 4*(kk*n + j) add $s1, $s1, $a1 # &b[kk][j] sub $t4, $a3, $t1 # k = n - kk li $t7, 4 # bsize fork1: # for( k=kk; k < min( kk + bsize, n ); k++ ) { # sum += a[i][k] * b[k][j]; l.s $f1, 0($s0) # load A[i][k] l.s $f2, 0($s1) # load b[k][j] mul.s $f1, $f1, $f2 # multiply a[i][k] * b[k][j] add.s $f0, $f0, $f1 # add result to sum addi $s0, $s0, 4 # advance a[i][k] add $s1, $s1, $t8 # advance b[k][j] addi $t7, $t7, -1 # decrement bsize beqz $t7, endfork # end if zero addi $t4, $t4, -1 # decrement k bnez $t4, fork1 # end if zero endfork: move $s0, $t5 # restore a[i][k] mul $t5, $a3, $t2 # i*n add $t5, $t5, $t3 # i*n + j sll $t5, $t5, 2 # 4*(i*n + j) add $t5, $t5, $a2 # &c[i][j] l.s $f1, 0($t5) # load C[i][j] add.s $f0, $f0, $f1 # add sum to C[i][j] s.s $f0, 0($t5) # save in C[i][j] addi $t6, $t6, -1 # decrement bsize beqz $t6, endforj # end if zero addi $t3, $t3, 1 # increment j blt $t3, $a3, forj1 # repeat while < N endforj: addi $t2, $t2, 1 # increment i blt $t2, $a3, fori1 # repeat while < N addi $t1, $t1, 4 # increment kk by bsize blt $t1, $a3, forkk # repeat while < N addi $t0, $t0, 4 # increment jj by bsize blt $t0, $a3, forjj # repeat while < N lw $s0, 0($sp) # restore used registers lw $s1, 4($sp) addi $sp, $sp, 8 jr $ra Contact Details

Related Samples

At ProgrammingHomeworkHelp.com, we provide comprehensive assignment support to students. Our website features a wide array of samples, including Assembly Language assignments. These expertly crafted samples serve as a valuable resource for students, offering clear insights into complex coding challenges and solutions. By exploring our Assembly Language examples, students can better understand low-level programming, improve their coding skills, and achieve academic success. Whether you're tackling an assignment or seeking to enhance your knowledge, our support ensures you have the tools needed to excel.